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Section 1

Introduction
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Adversarial Vulnerabilities
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Research Questions

q Do training data correlate to the adversarial robustness of
transformer models? If yes, how do they correlate?

q Help develop data-centric methods for enhancing model
robustness

q Help attribute malicious training data
q Can we predict the adversarial robustness of transformer

models before they are fine-tuned and without generating
adversarial examples?

q Speed up robustness evaluation
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Contributions

q The first work to analyze a comprehensive correlation between
fine-tuning data and transformer models’ robustness with a
taxonomy of 13 dataset-level indicators

q Demonstrate a strong correlation between fine-tuning data
and the adversarial robustness of transformer models

q Our interpretation framework can also be used as a fast tool
to evaluate the robustness of transformer-based text classifiers
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Section 2

Method
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Interpretation Framework
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Taxonomy of Data Features
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Section 3

Experiments
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Datasets

9 popular classification datasets:
q AG News
q Amazon Reviews Full, Amazon Reviews Polarity
q DBpedia
q Yahoo Answers
q Yelp Reviews Full, Yelp Reviews Polarity
q Banking77
q Tweet Eval Review
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Target Models

3 types of transformer models
q Encoder-only

q BERT
q RoBERTa
q ELECTRA

q Decoder-only
q GPT2

q Encoder-Decoder
q BART
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Evaluation

q In-domain & Out-domain
q Metrics

q RMSE
q R2

q MAE
q EVS
q MAPE
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Section 4

Results, Analyses, and Discussions
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Finding 1

Fine-tuning data have a strong correlation with Transformer
Robustness

METRIC INTERPOLATION EXTRAPOLATION

B
ER

T

RMSE↓ 0.055 ± 0.000 0.063 ± 0.001
R2↑ 0.904 ± 0.005 0.885 ± 0.033
MAE↓ 0.037 ± 0.000 0.045 ± 0.000
EVS↑ 0.907 ± 0.005 0.908 ± 0.021
MAPE↓ 0.071 ± 0.000 0.102 ± 0.004

Ro
B

ER
Ta

RMSE↓ 0.031 ± 0.000 0.061 ± 0.001
R2↑ 0.972 ± 0.000 0.900 ± 0.019
MAE↓ 0.025 ± 0.000 0.044 ± 0.000
EVS↑ 0.972 ± 0.000 0.922 ± 0.010
MAPE↓ 0.048 ± 0.000 0.095 ± 0.004

Table: ASR results (mean±std) on different transformer-based models
using Random Forest.
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Finding 2

Embedding distribution and token-based statistics features
are among the most influential indicators of adversarial

robustness

(a) Interpolation-
BERT

(b) Interpolation-
RoBERTa

(c) Extrapolation-
BERT

(d) Extrapolation-
RoBERTa

Figure: Importance of the best Random Forest regression model’s most
important features in predicting ASRs of BERT and RoBERTa in

interpolation and extrapolation setting.
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Finding 3

CHI, FR, # unique tokens and # classes have clear
correlations with ASR
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Section 5

Robustness Predictor
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Runtime Boosting

Figure: Our framework significantly improve running time, be it 30× to
193× faster than traditional methods with Model

Fine-Tuning+Adversarial Generation steps.
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Generalization across Transformers

METRIC BERT Distil-BERT RoBERTa Distil-RoBERTa
RMSE↓ 0.070 0.100 0.061 0.072
R2↑ 0.806 0.621 0.782 0.740
MAE↓ 0.045 0.075 0.052 0.049
EVS↑ 0.812 0.790 0.918 0.760
MAPE↓ 0.145 0.173 0.139 0.109

Table: We train on the robustness of 3 models and test on the remaining
one to test the transferability between transformer models of robustness

predictor. The top row indicates the model to be tested.
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Support Adversarial Training

Figure: ASR Prediction for BERT and RoBERTa with and without
adversarial training in both interpolation and extrapolation.
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Robustness to Statistical Randomness

Prediction of Random Forest in Table 14 also shows consistency in
the results varying from 0.00-0.01 and 0.00-0.03 in interpolation
and extrapolation settings.
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Conclusion

q Explain the correlation between training data and the
robustness of transformer classifiers

q Introduce a framework to predict and analyze the robustness



Thank You!




	Introduction
	Method
	Experiments
	Results, Analyses, and Discussions
	Robustness Predictor
	Conclusion

