A Curious Case of Searching for the Correlation between Training Data and Adversarial Robustness of Transformer Textual Models

Cuong Dang<sup>1</sup>, Dung D. Le<sup>2</sup>, Thai Le<sup>3</sup>, <sup>1</sup>FPT Software AI Center, Vietnam <sup>2</sup>College of Engineering and Computer Science, VinUniversity, Vietnam <sup>3</sup>Department of Computer Science, Indiana University, USA



# Contents







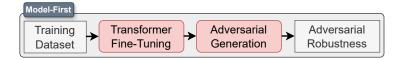
- Results, Analyses, and Discussions
- **5** Robustness Predictor

#### **6** Conclusion

# Introduction

# **Adversarial Vulnerabilities**

| Driginal Input Connoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus. |                                                                                                                                               | Prediction:<br>Positive (77%) |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Adversarial example<br>[Visually similar]                                                                                                          | Aonnoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.           | Prediction:<br>Negative (52%) |  |
| Adversarial example<br>[Semantically similar]                                                                                                      | Connoisseurs of Chinese <u>footage</u> will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus. | Prediction:<br>Negative (54%) |  |



# **Research Questions**

- Do training data correlate to the adversarial robustness of transformer models? If yes, how do they correlate?
  - Help develop data-centric methods for enhancing model robustness
  - $\hfill\square$  Help attribute malicious training data
- Can we predict the adversarial robustness of transformer models before they are fine-tuned and without generating adversarial examples?
  - □ Speed up robustness evaluation

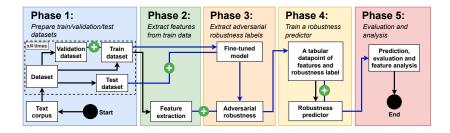
#### Contributions

- ❑ The first work to analyze a comprehensive correlation between fine-tuning data and transformer models' robustness with a taxonomy of 13 dataset-level indicators
- Demonstrate a strong correlation between fine-tuning data and the adversarial robustness of transformer models
- Our interpretation framework can also be used as a fast tool to evaluate the robustness of transformer-based text classifiers

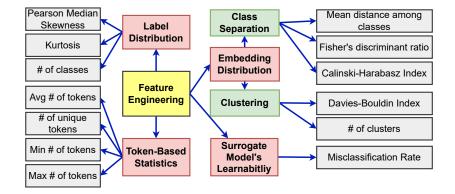


# Method

## **Interpretation Framework**



## **Taxonomy of Data Features**



# Experiments

# Datasets

- 9 popular classification datasets:
  - AG News
  - Amazon Reviews Full, Amazon Reviews Polarity
  - DBpedia
  - Yahoo Answers
  - □ Yelp Reviews Full, Yelp Reviews Polarity
  - Banking77
  - Tweet Eval Review

# **Target Models**

3 types of transformer models

- Encoder-only
  - BERT
  - RoBERTa
  - ELECTRA
- Decoder-only
  - GPT2
- Encoder-Decoder
  - BART

## **Evaluation**

In-domain & Out-domain
 Metrics

 RMSE
 R<sup>2</sup>
 MAE
 EVS
 MAPE

# **Results, Analyses, and Discussions**

#### Finding 1

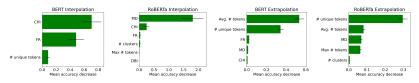
#### Fine-tuning data have a strong correlation with Transformer Robustness

|         | METRIC          | INTERPOLATION   | EXTRAPOLATION   |
|---------|-----------------|-----------------|-----------------|
| -       | RMSE↓           | $0.055\pm0.000$ | $0.063\pm0.001$ |
|         | $R^{2}\uparrow$ | $0.904\pm0.005$ | $0.885\pm0.033$ |
| ER      | MAE↓            | $0.037\pm0.000$ | $0.045\pm0.000$ |
| B       | EVS↑            | $0.907\pm0.005$ | $0.908\pm0.021$ |
|         | MAPE↓           | $0.071\pm0.000$ | $0.102\pm0.004$ |
| RoBERTa | RMSE↓           | $0.031\pm0.000$ | $0.061\pm0.001$ |
|         | $R^{2}\uparrow$ | $0.972\pm0.000$ | $0.900\pm0.019$ |
|         | MAE↓            | $0.025\pm0.000$ | $0.044\pm0.000$ |
|         | EVS↑            | $0.972\pm0.000$ | $0.922\pm0.010$ |
|         | MAPE↓           | $0.048\pm0.000$ | $0.095\pm0.004$ |

 
 Table: ASR results (mean±std) on different transformer-based models using Random Forest.

## Finding 2

#### Embedding distribution and token-based statistics features are among the most influential indicators of adversarial robustness

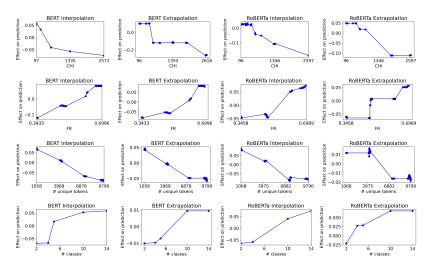


(a) Interpolation- (b) Interpolation- (c) Extrapolation- (d) Extrapolation-BERT RoBERTa BERT RoBERTa

Figure: Importance of the best Random Forest regression model's most important features in predicting ASRs of BERT and RoBERTa in interpolation and extrapolation setting.

# Finding 3

#### CHI, FR, # unique tokens and # classes have clear correlations with ASR



# **Robustness Predictor**

# **Runtime Boosting**

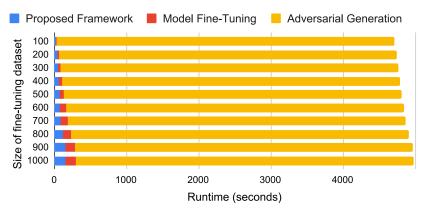


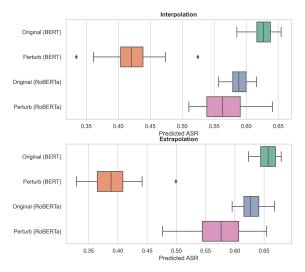
Figure: Our framework significantly improve running time, be it  $30 \times$  to  $193 \times$  faster than traditional methods with *Model Fine-Tuning+Adversarial Generation* steps.

## **Generalization across Transformers**

| METRIC          | BERT  | Distil-BERT | RoBERTa | Distil-RoBERTa |
|-----------------|-------|-------------|---------|----------------|
| RMSE↓           | 0.070 | 0.100       | 0.061   | 0.072          |
| $R^{2}\uparrow$ | 0.806 | 0.621       | 0.782   | 0.740          |
| MAE↓            | 0.045 | 0.075       | 0.052   | 0.049          |
| EVS↑            | 0.812 | 0.790       | 0.918   | 0.760          |
| MAPE↓           | 0.145 | 0.173       | 0.139   | 0.109          |

**Table:** We train on the robustness of 3 models and test on the remaining one to test the transferability between transformer models of robustness predictor. The top row indicates the model to be tested.

# Support Adversarial Training



**Figure:** ASR Prediction for BERT and RoBERTa with and without adversarial training in both interpolation and extrapolation.

#### **Robustness to Statistical Randomness**

Prediction of Random Forest in Table 14 also shows consistency in the results varying from 0.00-0.01 and 0.00-0.03 in interpolation and extrapolation settings.

## Conclusion

- Explain the correlation between training data and the robustness of transformer classifiers
- $\hfill\square$  Introduce a framework to predict and analyze the robustness

# Thank You!

