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Section 1

Introduction
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Adversarial Vulnerabilities
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Robustness Predictor  Conclusion
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Research Questions

) Do training data correlate to the adversarial robustness of
transformer models? If yes, how do they correlate?
[ Help develop data-centric methods for enhancing model
robustness
[ Help attribute malicious training data
() Can we predict the adversarial robustness of transformer
models before they are fine-tuned and without generating
adversarial examples?
) Speed up robustness evaluation
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Contributions

U The first work to analyze a comprehensive correlation between
fine-tuning data and transformer models’ robustness with a
taxonomy of 13 dataset-level indicators

) Demonstrate a strong correlation between fine-tuning data
and the adversarial robustness of transformer models

) Our interpretation framework can also be used as a fast tool
to evaluate the robustness of transformer-based text classifiers
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Section 2

Method
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Interpretation Framework

Robustness Predictor
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Taxonomy of Data Features

Robustness Predictor  Conclusion
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Section 3

Experiments
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Datasets

9 popular classification datasets:
U AG News
U Amazon Reviews Full, Amazon Reviews Polarity
U DBpedia
U Yahoo Answers
U Yelp Reviews Full, Yelp Reviews Polarity
U Banking77

) Tweet Eval Review
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Target Models

3 types of transformer models
U Encoder-only

0 BERT
) RoBERTa
O ELECTRA

1 Decoder-only
0 GPT2

U Encoder-Decoder
1 BART
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Evaluation

1 In-domain & Out-domain
) Metrics

0 RMSE
0 R

0 MAE
0 EVS

0 MAPE
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Section 4

Results, Analyses, and Discussions
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Fine-tuning data have a strong correlation with Transformer

Robustness

METRIC INTERPOLATION EXTRAPOLATION

RMSE| 0.055 £ 0.000 0.063 + 0.001
- Rt 0.904 £ 0.005 0.885 +0.033
E MAE| 0.037 £ 0.000 0.045 £ 0.000
@ EVStH 0.907 £ 0.005 0.908 + 0.021

MAPE] 0.071 £ 0.000 0.102 £ 0.004
< RMSE| 0.031 £ 0.000 0.061 £+ 0.001
'E R 0.972 £ 0.000 0.900 £ 0.019
Iél MAE] 0.025 £ 0.000 0.044 £ 0.000
K EVStT 0.972 £ 0.000 0.922 +0.010

MAPE] 0.048 £ 0.000 0.095 £ 0.004

Table: ASR results (mean=std) on different transformer-based models

using Random Forest.
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Finding 2

Embedding distribution and token-based statistics features
are among the most influential indicators of adversarial

BERT Interpolation RoBERTa Interpolation BERT Extrapolation RoBERTa Extrapolation
MD v i

w Avg. # tokens # unique tokens

o # unique tokens Avg. # tokens
R

R R MD.
# clusters

Max # tokens MD. Max # tokens

# unkque tokens o8I cHi # clusters

00 0.0 0.0

02 04 06 08 05 10 15 20 02 04 o. 01 02 03
Mean accuracy decrease Mean accuracy decrease Mean accuracy decrease Mean accuracy decrease

(a) Interpolation- (b) Interpolation- (c) Extrapolation- (d) Extrapolation-
BERT RoBERTa BERT RoBERTa

Figure: Importance of the best Random Forest regression model's most
important features in predicting ASRs of BERT and RoBERTa in
interpolation and extrapolation setting.



Introduction  Method Experiments Results, Analyses, and Discussions Robustness Predictor ~Conclusion 16/24

Finding 3

CHI, FR, # unique tokens and # classes have clear
correlations with ASR
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Section 5

Robustness Predictor
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Runtime Boosting
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Figure: Our framework significantly improve running time, be it 30X to
193x faster than traditional methods with Mode/
Fine-Tuning+Adversarial Generation steps.
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Generalization across Transformers

METRIC BERT Distil-BERT RoBERTa Distil-RoBERTa

RMSE 0.070 0.100 0.061 0.072
R?1 0.806 0.621 0.782 0.740
MAE/| 0.045 0.075 0.052 0.049
EVSt 0.812 0.790 0.918 0.760
MAPE|  0.145 0.173 0.139 0.109

Table: We train on the robustness of 3 models and test on the remaining
one to test the transferability between transformer models of robustness
predictor. The top row indicates the model to be tested.
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Support Adversarial Training

Interpolation

Original (BERT) |—.—{
Perturb (BERT) | ¢ }—-—‘
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‘+
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Extrapolation
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Figure: ASR Prediction for BERT and RoBERTa with and without
adversarial training in both interpolation and extrapolation.
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Robustness to Statistical Randomness

Prediction of Random Forest in Table 14 also shows consistency in
the results varying from 0.00-0.01 and 0.00-0.03 in interpolation
and extrapolation settings.
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Conclusion

U Explain the correlation between training data and the
robustness of transformer classifiers

U Introduce a framework to predict and analyze the robustness
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